Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes.

نویسندگان

  • Olena Mykhailiv
  • Monika Imierska
  • Martyna Petelczyc
  • Luis Echegoyen
  • Marta E Plonska-Brzezinska
چکیده

The development of high-surface-area carbon electrodes with a defined pore size distribution and the incorporation of pseudo-active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano-onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission- and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g(-1) for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g(-1) for the CNOs/Ppy bilayer (electrochemical deposition).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes

Recent studies have demonstrated that carbon nano-onion (CNO) is a promising candidate for high-power supercapacitors due to the nonporous outer shell, which is easily accessible to electrolyte ions. However, the nonporous ion-accessible outer shells also limit the energy density of the CNOs, which requires large specific surface area. Introducing porosity to the outer shells of CNOs can effect...

متن کامل

Modified Glass Carbon Electrode (GCE) Electropolymerized Polypyrrole Nanofibers with Hemoglobin (Hb) Film as a Unique Biosensor for Nitrite Determination

Abstract: In this study, we were investigated behavior the electrochemical reductionof nitrite at a hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containingpolypyrol nanofiber (ppy) films. Polypyrrole (PPy) nanofibers have been constructed onGCE applying electrochemical technique, and can to deposit diverse polymers onminiaturized electrodes with this commo...

متن کامل

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

Electrochemical thin film deposition of polypyrrole on different substrates

Polypyrrole is one of the important conductive polymers that are widely used in energy storage systems, biosensors and electronics. The electrochemical synthesis of polypyrrole has advantages of simple process, mass production and low cost. In this study, polypyrrole thin films were deposited on different electrode substrates by cyclovoltammetric (CV), galvanostatic and potentiostatic depositio...

متن کامل

Frontiers in nano-architectured carbon–metal oxide electrodes for supercapacitance energy storage: a review

Supercapacitor (SC) is an energy storage technology that bridges the gap between conventional capacitors and rechargeable batteries. Emerging nano-architectured carbon–metal oxide composites are promising for electrode designs for supercapacitors due to their unique strategy utilizing electrochemical double-layer capacitance (EDLC) and pseudo-capacitance together in single cell to optimize the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry

دوره 21 15  شماره 

صفحات  -

تاریخ انتشار 2015